# Арифметические операции в позиционных системах счисления.

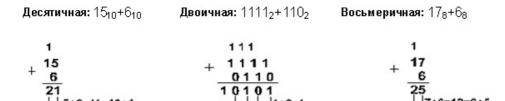
### Сложение

Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны — это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления.

#### Сложение в двоичной системе

| + | 0 1  |
|---|------|
| 0 | 0 1  |
| 1 | 1 10 |

## Сложение в восьмеричной системе


| + | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
| 1 | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 10 |
| 2 | 2 | 3  | 4  | 5  | 6  | 7  | 10 | 11 |
| 3 | 3 | 4  | 5  | 6  | 7  | 10 | 11 | 12 |
| 4 | 4 | 5  | 6  | 7  | 10 | 11 | 12 | 13 |
| 5 | 5 | 6  | 7  | 10 | 11 | 12 | 13 | 14 |
| 6 | 6 | 7  | 10 | 11 | 12 | 13 | 14 | 15 |
| 7 | 7 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

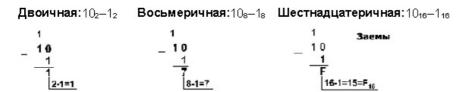
### Сложение в шестнадцатеричной системе

| +  | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | Α  | В  | С   | D   | E  | F  |
|----|---|----|----|----|----|----|----|----|----|----|----|----|-----|-----|----|----|
| 0  | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | Α  | В  | С   | D   | Ε  | F  |
| 1  | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | Α  | В  | C  | D   | Ε   | F  | 10 |
| 2  | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | A  | В  | C  | D  | E   | F   | 10 | 11 |
| 3  | 3 | 4  | 5  | 6  | 7  | 8  | 9  | Α  | В  | C  | D  | E  | F   | 10  | 11 | 12 |
| 4  | 4 | 5  | 6  | 7  | 8  | 9  | Α  | В  | C  | D  | Ε  | F  | 10  | 11  | 12 | 13 |
| 5  | 5 | 6  | 7  | 8  | 9  | A  | В  | C  | D  | E  | F  | 10 | 11  | 12  | 13 | 14 |
| 6  | 6 | 7  | 8  | 9  | A  | В  | C  | D  | Ε  | F  | 10 | 11 | 12  | 13  | 14 | 15 |
| 7  | 7 | 8  | 9  | A  | В  | C  | D  | E  | F  | 10 | 11 | 12 | 13  | 14  | 15 | 16 |
| 8  | 8 | 9  | Α  | В  | C  | D  | E  | F  | 10 | 11 | 12 | 13 | 14  | 15  | 16 | 17 |
| 9  | 9 | A  | В  | C  | D  | E  | F  | 10 | 11 | 12 | 13 | 14 | 15  | 16  | 17 | 18 |
| Α  | A | В  | C  | D  | E  | F  | 10 | 11 | 12 | 13 | 14 | 15 | 16  | 17  | 18 | 19 |
| В  | В | C  | D  | Ε  | F  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17  | 18  | 19 | 1A |
| C  | C | D  | E  | F  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18  | 19  | 1A | 1B |
| D  | D | E  | F  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19  | 1 A | 1B | 1C |
| E. | E | F  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1.6 | 1B  | 1¢ | 1D |
| F  | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 18 | 1B  | 1C  | 10 | 1E |

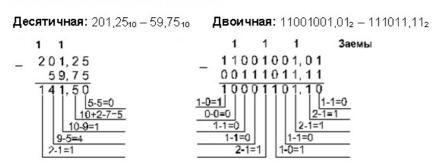
При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

Пример 1. Сложим числа 15 и 6 в различных системах счисления.




Шестнадцатеричная: F16+616




## Вычитание

При вычитании цифры вычитаются по разрядам, и если при этом возникает недостаток, то происходит заем в старших разрядах.

Пример. Вычтем единицу из чисел 102, 108 и 1016



Пример. Вычтем число 59,75 из числа 201,25.



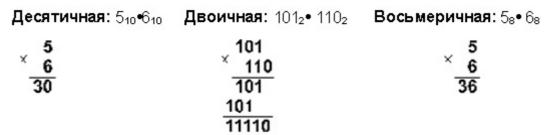
Восьмеричная: 311,28 - 73,68 Шестнадцатеричная:  $C9,4_{16} - 3B,C_{18}$ 

Other:  $201,25_{10} - 59,75_{10} = 141,5_{10} = 10001101,1_2 = 215,4_8 = 8D,8_{16}$ .

#### Умножение

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

#### Умножение в двоичной системе


| * | 0 | 1 |
|---|---|---|
| 0 | 0 | 0 |
| 1 | 0 | 1 |

### Умножение в восьмеричной системе

| * | 0 | 1 | 2  | 3  | 4  | 5  | 6  | 7  |
|---|---|---|----|----|----|----|----|----|
| 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 1 | 2  | 3  | 4  | 5  | 6  | 7  |
| 2 | 0 | 2 | 4  |    | 10 | 12 | 14 | 16 |
| 3 | 0 | 3 | 6  | 11 | 14 | 17 | 22 | 25 |
| 4 | 0 | 4 | 10 | 14 | 20 | 24 | 30 | 34 |
| 5 | 0 | 5 | 12 | 17 | 24 | 31 | 36 | 43 |
| 6 | 0 | 6 | 14 | 22 | 30 | 36 | 44 | 52 |
| 7 | 0 | 7 | 16 | 25 | 34 | 43 | 52 | 61 |

Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.

Пример. Перемножим числа 5 и 6.



Other: 5\*6 = 3010 = 111102 = 368.

Проверка. Преобразуем полученные произведения к десятичному виду:

$$111102 = 24 + 23 + 22 + 21 = 30$$
;

$$368 = 3 \cdot 81 + 6 \cdot 80 = 30$$
.

Деление

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.

Пример 1. Разделим число 30 на число 6.

**Ответ**:  $30:6=5_{10}=101_2=5_8$ .

Пример 2. Разделим число 5865 на число 115.

**Десятичная:** 5865<sub>10</sub>: 115<sub>10</sub> **Двоичная:** 1011011101001<sub>2</sub>: 1110011<sub>2</sub>

Восьмеричная: 133518:1638

**Ответ**:  $5865 : 115 = 51_{10} = 110011_2 = 63_8$ .

Проверка. Преобразуем полученные частные к десятичному виду:

$$110011_2 = 2^5 + 2^4 + 2^1 + 2^0 = 51$$
;  $63_8 = 6*8^1 + 3*8^0 = 51$ .